プロフィール

kgkrkgk

Author:kgkrkgk
FC2ブログへようこそ!

最新記事
最新コメント

月別アーカイブ
カテゴリ
検索フォーム

RSSリンクの表示
リンク
ブロとも申請フォーム
QRコード

QR

東工大数学'20年前期[2]

複素数平面上の異なる3ABCを複素数αβγで表す。ここでABCは同一直線上にないと仮定する。
(1) ABCが正三角形となる必要十分条件は、
であることを示せ。
(2) ABCが正三角形のとき、△ABCの外接円上の点Pを任意にとる。このとき、
および
を外接円の半径Rを用いて表せ。ただし、2XYに対し、XYとは線分XYの長さを表す。

解答 13乗根ω()の性質、をフル活用します。

(1) 題意の条件の下に、
ABCが正三角形 Aの周りに点B回転する(複素数の回転を参照)と点C
ここで、なので、とおくと、
従って、
展開して整理すると、

よって、△ABCが正三角形となる必要十分条件(条件・命題を参照)は、

(2) ABCの外接円の中心が原点Oで、円上に反時計回りにABCの順に並んでいるとして、一般性を失いません。△ABCが正三角形のとき、より、として、
また、より、より、
Pを表す複素数をpとして、,これらを使って、
 ・・・①
 ・・・②
 ・・・③
①+②+③より、 ......[]
 ・・・④

 ・・・⑤

 ・・・⑥
④+⑤+⑥より、
......[]



TOPに戻る   苦学楽学塾   考察のぺージ

各問題の著作権は出題大学に属します。
©2005-2020
(有)りるらる
苦学楽学塾 随時入会受付中!
理系大学受験ネット塾苦学楽学塾(ご案内はこちら)ご入会は、
まず、こちらまでメールをお送りください。
 雑誌「大学への数学」出版元
スポンサーサイト



コメントの一覧

コメントの投稿














管理者にだけ表示を許可する

前後のページの案内

バンドメンバー募集のキング 新着コールマン通販